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We coarse-grain an extended conformation space for RNA chains that search for their structure concurrently
with their sequential synthesis. Thus we describe the sequential folding dynamics modulo kinetic barriers of
order N (N is the number of monomers in the segment and %S as< %). The random energy model is shown to
hold for a range of a’s which depends on the RNA primary sequence.

PACS number(s): 87.10.+e, 87.15.He, 87.15.Da

There is in principle no reason why a biopolymer should
not start the search for its active structure while it is being
assembled by progressive incorporation of monomers. Thus
the sequential folding (SF) scenario, that is, the search in
conformation space by a molecular that is concurrently being
assembled, has been validated for real RNA’s whose struc-
ture formation is subject to time constraints. In specific con-
texts where the synthetic machinery does not significantly
interfere with biasing the upstream folding of the growing
RNA chain, the SF scenario appears to account for the vari-
able rate of chain elongation during progressive RNA syn-
thesis [1-3].

The dearth of biological systems that have been addressed
theoretically results from the fact that a proteic environment
can radically alter the refolding of the growing chain and
such complex protein-RNA interactions cannot be success-
fully modeled at present. Nevertheless, in the relatively
simple context of RNA replication, the SF scenario has been
successfully shown to account for pulse-chase kinetic experi-
ments revealing the variable rate of chain elongation [1-3].

We intend to characterize the complex dynamics of se-
quential folding for a specific RNA molecule N, monomers
long by introducing various coarse-grainings of the extended
conformation space J. This space contains all plausible sec-
ondary structures (intrachain base-pair patterns subject to the
Watson-Crick complementarity rules G—C, A—U, where
G=guanosine, C=cytosine, A=adenine, and U=uracil)
formed by segments of every length N, with 1ISN<N,. We
shall show that when elements in J are regarded as modulo
low kinetic barriers of interconversion, the resulting dynam-
ics of transitions between clusters of conformations follow a
type of relaxation characteristic of a random energy model
(REM) [4]. This description becomes meaningful since a suf-
ficiently large number—of order 2¥—of energy levels has
been considered. To understand the REM model as applied to
RNA sequential folding we first group structures that inter-
convert on fast time scales of the order of A~ lexp
(NY4*#), with A=10> s™! and £=0. In this context, the
expected activation energy barriers for monitored transitions
between equilibrated clusters depend on the progress of the
relaxation process in such a way that at time ¢ the barrier to
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be surmounted is of logarithmic order in ¢ [S]. That is, we
shall show that for a suitable level of coarse-graining the SF
pathways are governed by a REM relaxation which entails
surmounting larger and larger barriers which at time ¢ are of
order Int/q, where q is a characteristic time scale dependent
on the size of the system and on the relaxation time range
considered.

It should be pointed out that, since the number of plau-
sible secondary structures for a chain of length N is expo-
nentially dependent on N, as simple combinatorial argu-
ments show [5,6], we are not actually dealing with a
thermodynamic limit but rather with a sufficiently large num-
ber of energy levels to apply REM statistics and, in general,
to make probabilistic inferences. Within this context, an ap-
propriate convention has been adopted [5]: Slowly diverging
barriers of O(NV**#) are referred to as nonergodic, while
fast diverging barriers of order N2~ ¢ are referred to as er-
godic, solely to indicate that the latter are not surmountable
within the experimental time scales involved in the assem-
bling of RNA molecules [3,5].

The REM description will be shown to break down as the
size of the kinetic clusters is increased. As we approach er-
godic cluster sizes, that is, as we identify conformations
separated by barriers of order N2 %, a distinctively orga-
nized region of the energy spectrum is explored. Thus the
activation energy barriers of significant transitions grow far
more slowly than any multiple of In[#/Q(N(f)], where
Q(N)=A"Texp(N'">~®) is the characteristic time scale for a
chain that has reached length N at time .

Thus we shall conclude that only the upper portion of the
extended energy spectrum for a real RNA chain that folds
sequentially is random and uncorrelated (cf. [6]). SF delivers
the molecule to organized states only after REM-like equili-
bration has taken place within clusters of rapidly intercon-
verting states. Such observations are compatible with the te-
nets of statistical mechanics in the sense that organized
behavior manifests itself in an averaged representation of the
dynamics.

We shall represent each coarse-graining by a quotient
space consisting of equivalence classes each of which is
formed by conformations that have been grouped and thus
are regarded as equivalent. A convenient conformation space
J contains all folded segments of various lengths regarded
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modulo their secondary structure. Thus, each equivalence
class is labeled by a base-pairing pattern.

In order to represent the dynamics of sequential folding
we shall now define a quotient space J/=, in which we
regard secondary structures modulo the kinetic barriers asso-
ciated to their interconversion. That is, the equivalence rela-
tion “=,” is defined as follows: Let s,s’ € 7J, thens= s’ if
and only if

~In[k(s—s")/A]= O W pin(s,s")),

1
~In[k(s" —5)/A]= O\ min(s,5")),

where j<a<3, and k(s—s') is the unimolecular rate con-

stant [5,7] for the rate-limiting step in the interconversion
between the member of minimal length in class s and the
member of minimal length in class s’. The integer
Nqin(s,s") is the minimum chain length in the reunion
sUs'. Each equivalence relation =, defined on J corre-
sponds to a specific truncation of the activation energy land-
scape such that secondary structures are regarded modulo
kinetic barriers of interconversion of order N*.

At this point we may describe the dynamics for different
coarse-grainings of the activation energy landscape. In order
to properly do this, we shall regard sequential folding path-
ways in J as integral curves of a vector field defined over
J and describe different skeletal versions of this field corre-
sponding to different coarse-grainings of J. The advantage
of this geometric approach lies in the fact that all trajectories
may be studied in a systematic fashion as will become ap-
parent when the computational results are presented. In rig-
orous terms, if the map A: J—T7J (T is a tangent bundle,
that is, the space of all plausible smooth vector fields defined
over J) denotes the vector field whose trajectories are the SF
pathways, we are interested in describing the vector field
A, 3/=,—-T[3/=,], a map that makes the following dia-
gram commutative (by commutative we mean that, given a
starting point in J, the same image in T[J/=,] is obtained
regardless of the pathway we choose along the diagram):

3 * o=,
Al L A,
T3 Lo TI3/=.] )

where ® and 7® denote the canonical projections which
associate each element to its equivalence class. The commu-
tativity of the diagram translates into the operator equation

A ®=[TD]A. 3)

Thus for chain length N, the map A , determines the possible
events whose associated time scales are larger than
A~ lexp(N).

The A dynamics has been simulated using kinetically
controlled Monte Carlo methods [3,5]. Thus, a sequence of
refolding and chain growth events becomes a realization of a
Markov chain representing a trajectory in J. Such computa-
tions have been described elsewhere [3,5], thus only the ba-
sic tenets are sketched.
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For each value of the contour variable N we define a map
N—J(N)={j:1<j<sn(N)}, where J(N) is a collection of
elementary events which a segment of length N might un-
dergo, and n(N) is the number of elementary events. Asso-
ciated to each event, there is a unimolecular rate constant
k;(N) which is equal to the rate constant for the jth event
which may take place as the chain reaches length N. The
only elementary events allowed are chain-elongation steps
(j=1), or elementary refolding events (j=2) that should
satisfy kj(N)'IStexp‘; lexpt 1S the experimental replication
turnover time scale (=15 s for an RNA sequence 220 nucle-
otides long) [1,3]. The mean time for an elementary refold-
ing event is the reciprocal of its unimolecular rate constant.
Since J is made up of secondary structures for strands of
various lengths, the mean time for an elementary refolding
event is the sum of the mean time of a single helix-decay (or
dismantling) event, which is zero in the particular case where
no helix needs to be dismantled, plus the mean time of a
helix-formation event.

The unimolecular rate constants for helix decay and helix
formation have been obtained in analytical form [5,7] and
used extensively in our computations. Their associated ki-
netic barriers depend respectively on the enthalpic loss asso-
ciated to helix formation and the entropy loss associated to
loop closure. Thus the compilation of thermodynamic param-
eters [8] begets the compilation of unimolecular rate con-
stants upon which the Markov chain is constructed. The Mar-
kovian nature of the process is in accord with experimental
evidence [1] and is defined as follows.

Let re[O,E;»'(:"?kj(N)] be a Poissonian random variable
and let 7* be a realization of r such that if

* s

j*—1 j
> ki(N)<r*< ki(N) (4)

j=0 i=0

[ko(N)=0 for any N), then the event j*=j*(N) is chosen
as the growing RNA chain reaches length N. The sequence
{j*(1),j*(2),j*(3), ...,} constitutes a realization of the
Markov process.

A regular site N=N(reg) along the RNA chain corre-
sponds to a segment for which chain elongation is the pre-
vailing event, that is j*(V(reg))=1. On the other hand, at a
pause site N =N (pause), there exists at least one unimolecu-
lar rate constant for refolding which is comparable to
k(N (reg))=k;(N(pause)=50 s~ ! [5]. Thus, the A dynam-
ics are characterized by a relaxation process and the expected
relaxation time, (#(relax)), for each transition is computed as

(t(relax)) =[k;x(N(pause))] ™' (5)

A Markov chain {j*(1),j*(2),j*(3), ...,} determining
a trajectory in J induces another Markov chain {j*(N)} in
J/=: The event j*(N) only exists and is equal to j*(N) if
and only if k;«(N)<A exp(—N®). Thus, the A, dynamics
may be followed using the projection scheme defined by the
diagram for specific RNA molecules where the SF scenario
has been proved to hold [3,9]. This is shown in Figs. 1 and 2.

For convenienece, we monitor in real time the number
In(f(t(relax))), where f~10° s™! is the rate constant for
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FIG. 1. Time dependence of the transition kinetic barrier when
monitoring the dynamics in J/=, for 08 MDV1-RNA. The sym-
bols ¢, f, (#(relax)), and QL[N(¢)] denote real time, base-pair for-
mation rate constant, expected relaxation time, and characteristic
time scale, respectively. The REM behavior is revealed by the open-
circle plot (a=0.25), the filled-circle plot (a=0.28), and the re-
sults of pulse-chase experiments indicated by open squares. The
open-triangle plot (a=0.44) reflects a high level of organization
suggesting a correlated lower portion of the extended energy spec-
trum explored within large time scales.

single base-pair formation [3,5,7]. This quantity is propor-
tional to the activation energy barrier —In(kj+,(N)/A) of a
transition in J/=,,.

The results for the species Q8 MDV-1RNA (N,=220)
[1,3] are displayed in Fig. 1. The open and filled circle plots
correspond to a=0.25 and 0.28, respectively. The open
squares are experimental results obtained by measuring the
variable rate of chain elongation using pulse-chase tech-
niques [1]. The chain elongation delay at specific sites along
the RNA sequence [1] has been satisfactorily attributed to the
occurrence of a refolding event, in accord with the simula-
tions [3]. Thus the experimental results reported in [1] appear
to correspond to a SF dynamics coarse-grained to the level
a=0.28. The logarithmic dependence of the activation bar-
riers on real time is the signature of a REM-like relaxation
which has been estimated to hold up to coarse-grainings of
the order of a;~0.31 for this RNA species. Beyond this
exponent, the kinetic barriers grow far more slowly than any

10 log,, { 1/ QN()] }

FIG. 2. Coarse-grained dynamics for the species cobI5. The
same notation has been adopted. The open circles correspond to
a=0.25 and the filled squares correspond to a=0.35.

multiple of the logarithm of real time, reflecting a consider-
able departure from REM behavior. This typical organized
behavior is illustrated by the open-triangles plot correspond-
ing to a=0.44. This fact reveals the emergence of structural
organization for larger time scales and a highly correlated
lower portion of the extended energy spectrum which this
species explores in longer times during its SF.

A similar behavior has been observed for the species
cobls, the fifth intron of yeast apocytochrome b gene [9], as
shown in Fig. 2. Again, a REM behavior is detected for
a=0.25 (open circles), and a higher level of organization
energies for more drastic coarse-graining at a=0.35 (filled
squares). The critical exponent has been estimated at
a;=~0.27 for this species.

The range of dynamic coarse-grainings of conformation
space that yield REM dynamics is obviously dependent on
the RNA primary sequence and its correlations, as the two
examples above show. Thus for a purely random RNA se-
quence, we obviously have a@.;=0.5. In the light of the
results presented, we trust that dynamic coarse-graining will
become an analytical tool in the general context of complex
energy landscapes.
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